GATE Mathematics Syllabus 2018 pdf

0

Get details of GATE Mathematics Syllabus for GATE Exam 2018. GATE 2018 examination will be commenced in the months of February & March of 2018. Before appearing in the examination, each candidates must be aware about the examination pattern.


GATE SyllabusIn this particular article we are providing you GATE exam pattern for Mathematics branch. You can check out GATE exam pattern for Mathematics from our website. A table showing GATE paper pattern for Mathematics is given below. In this article one can check for GATE Mathematics Syllabus 2018.

About GATE

Graduate Aptitude Test in Engineering (GATE) is an examination that primarily tests the comprehensive understanding of the candidates in various undergraduate subjects in Engineering/Technology/Architecture and post-graduate level subjects in Science. The GATE score of a candidate reflects a relative performance level in a particular subject in the examination across several years.

GATE Mathematics Syllabus 2018

Here we are providing the detailed syllabus for GATE Mathematics for students reference purpose :


Exam Section Marks Weightage
General Aptitude 15% of total marks
Subject questions 85% of total marks

About GATE Mathematics

Mathematics is the study of topics such as quantity (numbers), structure, space and change. There is a range of views among mathematicians and philosophers as to the exact scope and definition of mathematics.

General Aptitude – GATE Syllabus 2018

General Aptitude (GA) section is common to all the papers. The General Aptitude section is designed to test your language, analytical and quantitative skills. For full details about General Aptitude Syllabus Click on General Aptitude Syllabus.

Subject questions (Mathematics)

  • Linear Algebra
  • Complex Analysis
  • Real Analysis
  • Ordinary Differential Equations
  • Algebra
  • Functional Analysis
  • Numerical Analysis
  • Partial Differential Equations
  • Topology
  • Probability and Statistics
  • Linear programming

Linear Algebra

Finite dimensional vector spaces; Linear transformations and their matrix representations, rank; systems of linear equations, eigenvalues and eigenvectors, minimal polynomial, Cayley-Hamilton Theorem, diagonalization, Jordan-canonical form, Hermitian, SkewHermitian and unitary matrices; Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, self-adjoint operators, definite forms.

Complex Analysis

Analytic functions, conformal mappings, bilinear transformations; complex integration: Cauchy’s integral theorem and formula; Liouville’s theorem, maximum modulus principle; Zeros and singularities; Taylor and Laurent’s series; residue theorem and applications for evaluating real integrals.

Real Analysis

Sequences and series of functions, uniform convergence, power series, Fourier series, functions of several variables, maxima, minima; Riemann integration, multiple integrals, line, surface and volume integrals, theorems of Green, Stokes and Gauss; metric spaces, compactness, completeness, Weierstrass approximation theorem; Lebesgue measure, measurable functions; Lebesgue integral, Fatou’s lemma, dominated convergence theorem.

Ordinary Differential Equations

First order ordinary differential equations, existence and uniqueness theorems for initial value problems, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients; method of Laplace transforms for solving ordinary differential equations, series solutions (power series, Frobenius method); Legendre and Bessel functions and their orthogonal properties.

Algebra

Groups, subgroups, normal subgroups, quotient groups and homomorphism theorems, automorphisms; cyclic groups and permutation groups, Sylow’s theorems and their applications; Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domains, Principle ideal domains, Euclidean domains, polynomial rings and irreducibility criteria; Fields, finite fields, field extensions.

Functional Analysis

Normed linear spaces, Banach spaces, Hahn-Banach extension theorem, open mapping and closed graph theorems, principle of uniform boundedness; Inner-product spaces, Hilbert spaces, orthonormal bases, Riesz representation theorem, bounded linear operators.

Numerical Analysis

Numerical solution of algebraic and transcendental equations: bisection, secant method, Newton-Raphson method, fixed point iteration; interpolation: error of polynomial interpolation, Lagrange, Newton interpolations; numerical differentiation; numerical integration: Trapezoidal and Simpson rules; numerical solution of systems of linear equations: direct methods (Gauss elimination, LU decomposition); iterative methods (Jacobi and Gauss-Seidel); numerical solution of ordinary differential equations: initial value problems: Euler’s method, Runge-Kutta methods of order 2.

Partial Differential Equations

Linear and quasilinear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification; Cauchy, Dirichlet and Neumann problems; solutions of Laplace, wave in two dimensional Cartesian coordinates, Interior and exterior Dirichlet problems in polar coordinates; Separation of variables method for solving wave and diffusion equations in one space variable; Fourier series and Fourier transform and Laplace transform methods of solutions for the above equations.

Topology

Basic concepts of topology, bases, subbases, subspace topology, order topology, product topology, connectedness, compactness, countability and separation axioms, Urysohn’s Lemma.

Probability and Statistics

Probability space, conditional probability, Bayes theorem, independence, Random variables, joint and conditional distributions, standard probability distributions and their properties (Discrete uniform, Binomial, Poisson, Geometric, Negative binomial, Normal, Exponential, Gamma, Continuous uniform, Bivariate normal, Multinomial), expectation, conditional expectation, moments; Weak and strong law of large numbers, central limit theorem; Sampling distributions, UMVU estimators, maximum likelihood estimators; Interval estimation; Testing of hypotheses, standard parametric tests based on normal, , , distributions; Simple linear regression.

Linear programming

Linear programming problem and its formulation, convex sets and their properties, graphical method, basic feasible solution, simplex method, big-M and two phase methods; infeasible and unbounded LPP’s, alternate optima; Dual problem and duality theorems, dual simplex method and its application in post optimality analysis; Balanced and unbalanced transportation problems, Vogel’s approximation method for solving transportation problems; Hungarian method for solving assignment problems.


So friends, if you have any doubts regarding GATE exams or any other Engineering entrance exams, Ask us via comment box. Also share this article GATE Mathematics Syllabus 2018 pdf to your friends.

You might also like More from author

Leave A Reply

Your email address will not be published.

Send this to friend