GATE Electrical Engineering Syllabus 2018 pdf

0

Get details of Electrical Engineering Syllabus for GATE Exam 2018. Electrical and Electronics engineering or EEE or EE deals with the study of micro electrical machines and it do have wide range of application in large manufacturing industries.


GATE SyllabusGATE exam for EEE will be conducted in the months of February or March 2018 and candidates, who want to get admission in best IIT’s will be appearing in this examination. GATE exam pattern for EEE is given on this webpage and you can check it out from the table given below. You can check out GATE exam pattern for Electrical Engineering from our website. A table showing GATE paper pattern for Electrical Engineering is given below. In this article one can check for GATE Electrical Engineering Syllabus 2018.

About GATE

Graduate Aptitude Test in Engineering (GATE) is an examination that primarily tests the comprehensive understanding of the candidates in various undergraduate subjects in Engineering/Technology/Architecture and post-graduate level subjects in Science. The GATE score of a candidate reflects a relative performance level in a particular subject in the examination across several years.

GATE Electrical Engineering Syllabus 2018

Here we are providing the detailed syllabus for GATE Electrical Engineering for students reference purpose :


Exam Section Marks Weightage
General Aptitude 15% of total marks
Engineering Mathematics 15% of total marks
Subject questions 70% of total marks

About GATE Electrical Engineering

Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism.

General Aptitude – GATE Syllabus 2018

General Aptitude (GA) section is common to all the papers. The General Aptitude section is designed to test your language, analytical and quantitative skills. For full details about General Aptitude Syllabus Click on General Aptitude Syllabus

Engineering Mathematics

  • Linear Algebra
  • Calculus
  • Differential equations
  • Complex variables
  • Probability and Statistics
  • Numerical Methods
  • Transform Theory

Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.

Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Green’s theorem.

Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables.

Complex variables: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals.

Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.

Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multi‐step methods for differential equations.

Transform Theory: Fourier Transform, Laplace Transform, z‐Transform. Electrical Engineering.

Subject questions (Electrical Engineering)

Those who are going to appear in GATE examination 2018 with Electrical Engineering subject, they are advised to check Syllabus for GATE Electrical Engineering Paper from our website which is available as under:

  • Electric Circuits
  • Electromagnetic Fields
  • Signals and Systems
  • Electrical Machines
  • Power Systems
  • Control Systems
  • Electrical and Electronic Measurements
  • Analog and Digital Electronics
  • Power Electronics

Electric Circuits

Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady‐state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two‐port networks, Three phase circuits, Power and power factor in ac circuits.

Electromagnetic Fields

Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits,Self and Mutual inductance of simple configurations.

Signals and Systems

Representation of continuous and discrete‐time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform.

Electrical Machines

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto‐transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines.

Power Systems

Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, GaussSeidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Control Systems

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, State transition matrix.

Electrical and Electronic Measurements

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Analog and Digital Electronics

Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085 Microprocessor: Architecture, Programming and Interfacing.

Power Electronics

Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation.


So friends, if you have any doubts regarding GATE exams or any other Engineering entrance exams , Ask us via comment box. Also share this article GATE Electrical Engineering Syllabus 2018 pdf to your friends.

You might also like More from author

Leave A Reply

Your email address will not be published.

Send this to friend